Product advantages

- Exclusive compressible surface for optimum printing quality combining screen and full tone printing within one colour
- Consistent printing results with long life
- Standardised quality guarantees constant printing conditions for large orders or repeat orders

- Easy mounting of printing sleeves using compressed air
- No additional air connection required
- Quick set-up times and easy handling

Product features

- Pass through air conduction – conducts air from the air cylinder to the surface via air holes
- Adaption to existing customer-specific carrier system – technical details are required for the optimum function
- Suitable for conventional cylinder presses and quick change cantilevered machines
- Proven rotec® interior design of synthetic resin and fibre compound assures long-lasting and consistent mounting characteristics
- Available in 3 different densities: SOFT | MEDIUM | FIRM
- Interlock notch, with position mark on opposite end NEW! – notch optional available as stainless steel interlock ring

- High-precision grinding (TIR ≤ 0.025 mm) measured on carrier cylinder at TIR ≤ 0.005 mm
- Tolerance of face-length according to DIN ISO 2768 T1 c
- Available in a conductive version with rotec® Ω-Surface Technology*

*The regulations of ATEX 95 concerning electrostatic derivation ability are fulfilled.
Safe and easy mounting

The “L”-shape of the interlock notch ensures safe and accurate positioning of the rotec® H/C Bridge Adapter on the air cylinder. The interlock notch locks the rotec® H/C Bridge Adapter on the air cylinder when removing the printing sleeve.

For thin-walled rotec® H/C Bridge Adapters, a stainless steel interlock ring is required, in order to avoid breaking of the notch in case of force effects and hence to ensure a long lifetime.

Optional available with end stop (s. picture) for the exact and convenient mounting of a photopolymer sleeve, e.g. nyloflex® ITR Thin.

Schematic of rotec® H/C Bridge Adapter – with pass through air conduction

- Air hole 1 Ø 2 mm
- Sealed surface
- Compressible PUR layer
- Pur intermediate layer
- Fiberglass

1 Air hole arrangement only shown schematically. Design depends on hole pattern/data of carrier system.